5 research outputs found

    EFFECTIVE GROUPING FOR ENERGY AND PERFORMANCE: CONSTRUCTION OF ADAPTIVE, SUSTAINABLE, AND MAINTAINABLE DATA STORAGE

    Get PDF
    The performance gap between processors and storage systems has been increasingly critical overthe years. Yet the performance disparity remains, and further, storage energy consumption israpidly becoming a new critical problem. While smarter caching and predictive techniques domuch to alleviate this disparity, the problem persists, and data storage remains a growing contributorto latency and energy consumption.Attempts have been made at data layout maintenance, or intelligent physical placement ofdata, yet in practice, basic heuristics remain predominant. Problems that early studies soughtto solve via layout strategies were proven to be NP-Hard, and data layout maintenance todayremains more art than science. With unknown potential and a domain inherently full of uncertainty,layout maintenance persists as an area largely untapped by modern systems. But uncertainty inworkloads does not imply randomness; access patterns have exhibited repeatable, stable behavior.Predictive information can be gathered, analyzed, and exploited to improve data layouts. Ourgoal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts byreplicating data at the storage device level.We present a comprehensive discussion of the design and construction of such a predictive engine,including workload evaluation, where we present and evaluate classical workloads as well asour own highly detailed traces collected over an extended period. We demonstrate significant gainsthrough an initial static grouping mechanism, and compare against an optimal grouping method ofour own construction, and further show significant improvement over competing techniques. We also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online)grouping, and provide motivation and solutions for addressing these challenges. These challengesinclude metadata storage, appropriate predictive collocation, online performance, and physicalplacement. We reduced the metadata needed by several orders of magnitude, reducing the requiredvolume from more than 14% of total storage down to less than 12%. We also demonstrate how ourcollocation strategies outperform competing techniques. Finally, we present our complete modeland evaluate a prototype implementation against real hardware. This model was demonstrated tobe capable of reducing device-level accesses by up to 65%

    Space-Efficient Predictive Block Management

    Get PDF
    With growing disk and storage capacities, the amount of required metadata for tracking all blocks in a system becomes a daunting task by itself. In previous work, we have demonstrated a system software effort in the area of predictive data grouping for reducing power and latency on hard disks. The structures used, very similar to prior efforts in prefetching and prefetch caching, track access successor information at the block level, keeping a fixed number of immediate successors per block. While providing powerful predictive expansion capabilities and being more space efficient in the amount of required metadata than many previous strategies, there remains a growing concern of how much data is actually required. In this paper, we present a novel method of storing equivalent information, SESH, a Space Efficient Storage of Heredity. This method utilizes the high amount of block-level predictability observed in a number of workload trace sets to reduce the overall metadata storage by up to 99% without any loss of information. As a result, we are able to provide a predictive tool that is adaptive, accurate, and robust in the face of workload noise, for a tiny fraction of the metadata cost previously anticipated; in some cases, reducing the required size from 12 gigabytes to less than 150 megabytes

    Shielding Methods for Gigahertz-Frequency Wideband Analog-Integrated Circuits

    No full text
    Coupling between closely spaced wideband analog radio frequency integrated circuits can cause degradation in device performance. Methods for reducing the coupling between packages were tested, with a strong focus on maintaining manufacturability and minimizing any increase in coupling between structures within the package. Methods include the application of magnetic absorbing material or resistive sheets to the package surface and the inclusion of conductive vias in the package walls. Package modifications were tested from 5-40 GHz through both full-wave simulation and physical measurement. The best tradeoff in performance and manufacturability below 20 GHz was found using 250-Ω/sq. resistive sheets connected to the return plane with vias in the package corners, while above 20 GHz, the best tradeoff was found by covering the package with magnetic absorbing materials. The magnetic absorbing material can be embedded directly in the package polymer itself, allowing easy manufacture
    corecore